Building Invisible Interfaces

Mark Weiser Computer Science Lab Xerox PARC November 2, 1994

My goals for this talk

That you will come to know the "ubicomp" perspective of new UI research some deep problems with VR, agents, GUIs, voice, magic, seamlessness, . . . some of our work at PARC some new systems challenges of the ubicomp perspective That some of you will think deeply and then

choose to work from a ubicomp perspective, *or* attack the root ideas of ubicomp

2

UIST94.tioga

Weiser, November 1, 1994 10:30 am PST

UIST94.tioga

Weiser, November 1, 1994 10:30 am PST

PARC and Xerox

Xerox Palo Alto Research Center is 24 years old

1

one of four research centers, PARC's focus is "systems" PARC's research in every Xerox product, including toner

PARC-generated product technology

laser printing, multiprocessors, quad-spot diodes, ...

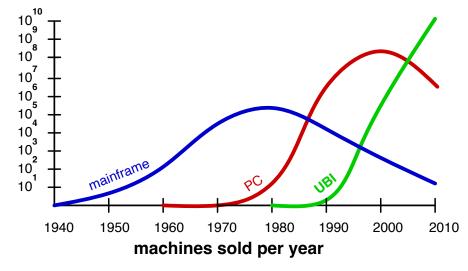
PARC-generated Xerox startup companies

synoptics, spectra-diode, parcplace, U.S. display consortium, ...

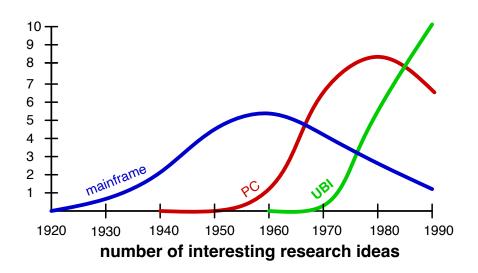
atom	S	to		culture
EML advanced materials	EIL components and subsystems	CSL hardware and software systems	ISTL humans and technology	SPL social dimension
laser diodes	LCD displays	networks architecture operating systems	linguistics graphics hypermedia	collaboration anthropology

PARC

Three revolutions in computing


1950, mainframe computing:

one computer used by many people


1975, PC computing:

one computer used by one person **2000, ubiquitous computing:**

many computers used by one person they had better be nearly invisible

Good technology is invisible "invisible" technology stays out of the way of the task like a good pencil stays out of the way of the writing like a good car stays out of the way of the driving bad technology draws attention to itself, not the task like a broken, or skipping, or dull pencil like a car that needs a tune-up computers are mostly not invisible you can hardly fail to notice when you use a computer they dominate interaction with them ubiquitous computing is about "invisible" computers

Weiser, November 1, 1994 10:30 am PST

UIST94.tioga

Examples of Invisible Technologies

Electricity

Electric motors hidden everywhere (20-30 per car) Wired and wirelessly ubiguitous

Literary Technology

Continuously surrounding us at many scales Used trivially and profoundly Literally visible, effectively invisible

How to Build Invisible Technologies?

start from arts and humanties: Philosophy, Phenomenology,

Anthropology, Psychology, Post-Modernism, Sociology of Science, Feminist Criticism, Your own experience... This is the most important part of the talk. You may not get it on first hearing. Patience.

When I am done you'll know what is wrong with:

creating an entertaining and dramatic user interface computers magically meeting our desires a computer idealized as an assistant virtual reality as the ultimate user interface

UIST94.tioga

9

Weiser, November 1, 1994 10:30 am PST

UIST94.tioga

10

Weiser, November 1, 1994 10:30 am PST

Your Personal Experience: the flow state

Remember the last time you spent several productive hours. It had some of the following characteristics:

- time passed unnoticed
- you were unaware of your surroundings
- it took you about half an hour to get engaged
- consciously you focused on a goal
- unconsciously you drew on tacit skills and knowledge
- the situation was very rich with details and nuances that you unconsciously took into account

The things you *did not think about --* the tacit, the context, the world -- made you smart.

Philosophy of Polanyi: "The Tacit Dimension" perception and thinking are always involve both

"distal" and "proximal" elements

distal is the current surface of thought

proximal is closer to us, and tacitly focuses on the distal

for instance:

distal: words coming out of my mouth

proximal: my muscle and brain activity when speaking

the "tacit dimension" is easily overlooked, and more important to understand, than the more available distal

12

Post-Modernism (Toulmin's Cosmopolis)

Modernism's origins in the 1600's

vision of human rationality as adequate to all things a particular historical response to chaos in European affairs

Modernism the major Western world-view 1600-2000

fueled advances in all fields of human endeaver is breaking down as omnisciently adequate

Post-Modernism

human nature is not fully explained by logical categories idealized logic has distracted us from real life and nature

Example

Example: Taylorism vs. Empowerment

Taylorism is modernist ideal of measured time and motion Empowerment is the post-modernist <u>letting be</u> of a <u>whole</u> <u>person</u> in a <u>complete situation</u> for <u>action</u>.

A return to the 'whole person'

rational analysis is only a small part of the successful person planning is only a small part of thinking and work

UIST94.tioga	13	Weiser, November 1, 1994 10:30 am PST	UIST94.tioga	14	Weiser, November 1, 1994 10:30 am PST

Feminist Deconstructionism

Standpoint theory

full history of a person in a culture and world is their *standpoint* standpoints influence our perception of the world around us every "objective" view also has a standpoint

Standpoints are enacted through peoples lives

standpoints are not reducible to a plan or analysis method standpoints accessed only via the individuals embodying them

Example Consequence: Strong Objectivity (Harding)

- Physics is only *weakly* objective because it presumes knowledge to be independent of knower
- Strong objectivity recognizes that knowledge from any one standpoint is limited

Example

Old business attitude of hiring women and minorites

its the law

its the right thing

New business attitude of hiring women and minorites

diversity of perspective is valued

different lives provide the most difference in perspective diverse workforce provides business advantage

(this does not mean you should start trusting businesspeople)

Examples: what's wrong with:

creating an entertaining and dramatic user interface --

draws attention to the machine itself;

confuses entertainment with use

computers magically meeting our desires --

assumes everything important can be articulated;

ignores tacit and standpoint

a computer idealized as an assistant -idealizes the anthropomorphic ;

insults human assistants; misplaces trust;

virtual reality as the ultimate user interface

reduces the human being to just a bundle of senses

17

ubicomp is the inverse of virtual reality

What we tried to do: unique features of ubiquitous computing

start from social science insights

- radically reinvents technology to fit people
- aims for true human effectiveness

avoid personal computer - make computers "invisible"

- no thing in the office humming on the desk
- ease of use so effective you don't notice the computer

many, many "displays"

- including audio, visual, environmental
- including electronic postit notes stuck to things

casual, low-intensity computer use

- displays for menus, for icons, for each window
- displays for background attention

UIST94.tioga

Weiser, November 1, 1994 10:30 am PST

UIST94.tioga

18

Weiser, November 1, 1994 10:30 am PST

Two misleading concepts

Seamless

is a seamless building one in which you never notice as you move from place to place?

making everything the same is easy;

hard is letting everything be itself, with other things

goal: seamful systems, with beautiful seams

Interface

implies boundary, difference, transduction

but the unit of design should be social people, in their environment, plus your device

talking "interface" trivializes the problem to the boundary

(but there is no better word, so I too say "user interface")

Where is the talk going

So far we have discussed:

- Xerox PARC, and its context for this work
- The foundations of new thinking about
 - Invisible Technology, Post-Modernism, etc.

20

- some goals of ubicomp design

Coming up:

- A walk through some new technology
- A taxonomy and description of new research challenges

Ubiquitous Computing Phase I devices

three sizes of devices; fill everyday space

tabs -- tiny wireless handhelds - hundreds/person pads -- booksized X terminals - tens/person boards -- whiteboard computers - one/person each device is a doorway to networked information

mobile infrastructure to make them useful

capable of 100's of devices per person capable of self-configuration maintenance both radio and infrared, in-building only

mobility is nearer-term focus, prior to true ubiquity

videotape

UIST94.tioga	21	Weiser, November 1, 1994 10:30 am PST	UIST94.tioga	22	Weiser, November 1, 1994 10:30 am PST

our attempt at ethics

Demonstrate technical feasibility of non-invasive design

enable individual control over privacy

Try to model ethical behavior

get human subjects committee approval for trying new technology

Communicate to public about dangers of one's work

grit teeth, cooperate with media "scare" stories don't leave it to others to say the negative

Some dimensions of our research

24

applications toolkits real-time programming techniques operating system protocol cellular handoff bandwidth physical wireless layer wired connection physical device

Systems Research Problems physical device Research driven by new figures of merit PAD Bits/Sec/M³ 2x3x0.5" 9x11x1" Instructions/joule Only two things are different in ubiquitous systems 2 week battery life 4 hour battery life traditionally variable things are now static 5 pounds 8051 processor traditionally static things are now variable 683xx processor 128k NVram 4 MB ram coming up: UI implications of new systems problems I²C external bus the problem of bandwidth PCMCIA card the problem of energy resistive touch screen electro-pen sense 128x64 mono display 640x480 4 level display

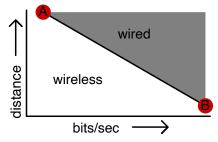
TAB

7 oz.

25

Weiser, November 1, 1994 10:30 am PST

UIST94.tioga


26

Weiser, November 1, 1994 10:30 am PST

The problem of bandwidth: Bits/sec/M³

On Earth Today: 10¹⁰ people, 10¹² M² land. Assume 10¹² Ghz total radio spectrum, 1 bit/sec/hz. A - 100 bits/sec/person worldwide

B - 1 terabit/sec/person within one meter

requires new radios: "nearfield"

4 meter range, 250k/bps bandwidth r⁶ power drop, excellent cell boundaries 5 Mhz carrier, excellent in-room penetration very simple construction low cost (< \$10 transceiver and digital interface) maximize *bits/sec/M³* use microwatts of power locate users

bandwidth assumptions of wireless

old: bandwidth is constant for a given connection new: bandwidth varies widely during use

because different cells have different congestions because mobile-IP is hiding your real network topology because sometimes you plug in

Ul research problem: how much to hide from the user applications with feedback on current bandwidth? separate control panel for user monitoring of bandwidth? indirect feedback through performance?

The problem of energy

low energy computing is good

less disposing of batteries less power generation needed easier to keep using

low energy computing is hard

instructions/joule little better today than ten years ago display and backlight and wireless link use most power

possibilities:

design for better instructions/joule reinvent the display create "low power" UI

29

Weiser, November 1, 1994 10:30 am PST

UIST94.tioga

30

Weiser, November 1, 1994 10:30 am PST

Weiser, November 1, 1994 10:30 am PST

Instructions per Joule Joule measures energy: 2¹⁶ joules in a D battery

I/J measures computation per battery things that don't help I/J

turn machine off: I/J = 0.

slow machine down: I/J unchanged.

something that can help

slow down while lowering voltage do this continuously, millisecond by millisecond

UI research problems:

how to keep the user in the loop? "MPG" meter? black tailpipe smoke?

reinvent the "display"

nondisplay displays

break out of TV model -- instead concentrate on interacting with a human somehow

blow the drapes, jingle, tingle, get warm, use subtle change

displays themselves

repaint very slowly? be microscopic? use non-symbols? new-symbols?

sacrifice everything for contrast

throw-away displays: 1 oz, 2mm thick, survive 4 ft. drop, 25 milliwatt

New User Interface?

keep doing *something* as long as possible pushback to user what is hard or easy "colored button" menus

color every button according to power-cost of pressing it will users stand for this?

like greyed buttons like real world how to predict?

static? learned? dynamic by system state?

Some new directions in ubicomp UI

Ubivid

tens of video streams per person per office create small town community **Project Jupiter** on-line community (MUD=multi-user-dimension) virtual community "chat" rooms, with multimedia some virtual rooms are also real rooms Casual I/O

"dangling string" ethernet monitor

UIST94.tioga	33	Weiser, November 1, 1994 10:30 am PST	UIST94.tioga	34	Weiser, November 1, 1994 10:30 am PST

🔲 motor **Dangling String Interface**

freely hangs from ceiling direct analog connection to ethernet 0.1 turn per packet

spins madly when busy wiggles gently most of the time can be heard, peripherally

gives body to something virtual is part of the environment, like a breeze

LambdaMoo and Jupiter

LambdaMoo: self-programmable online community

7,000 users, 5,000 user-built rooms, 50,000 active objects surface UI is that of textual games: "throw knife at dwarf" deep UI is people working/playing/living together

Jupiter: LambdaMoo + multimedia + real rooms AstroVR: astronomers sharing data and tools in rooms Jupiter prototype: multicast video and audio with rooms glass TTY UI can be ubicomp

Weiser, November 1, 1994 10:30 am PST

36

8 feet

UISY94.tioga

Conclusion

Long term: a new world view of what a computer can be. Short term: fun new science to do, many hard problems

for more info:

"The world is not a desktop." Marc Mark Weiser. ACM Interactions, V1N1. January 1994.

http://www.ubiq.com/hypertext/weiser/weiser.html

ftp://parcftp.parc.xerox.com/pub/MOO/papers

telnet://lambda.parc.xerox.com:8888

UIST94.tioga	37	Weiser, November 1, 1994 10:30 am PST	UIST94.tioga	38	Weiser, November 1, 1994 10:30 am PST

traditionally static things are now variable

bandwidth -- TCP assumptions break CPU performance (temporally and spatially) -- timing end-to-end network characteristics -- end-to-end flows connectivity -- yes? no? maybe? output: screen bits/pixel, size, number, stability input: type (pens?, kbd-simulations?), number physical network: RS-232, cellphone, CDPD, ethernet, ATM physical location: nearest printer, file server, router physical security: identity, network access, services

Traditionally, CS research tries to time-travel the curves:

- CPU speed doubles every year.
- memory cost halves every 1.5 years.
- other: display quality, headmount tech, ...

Old research method: aimed at when X is Y

X	Υ			
cpu speed	1000 MIPS on a desktop			
memory	practically free			
networks	are a gigabit/sec			
But in mobile infrastructure, it ain't so				
	and the second			

- For the next ten years, all improvements go into size
- Same memory, cpu, and bandwidth as workstations today.